
International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 41

NOVEL LOW POWER FLOATING POINT DIVIDER WITH LINEAR

APPROXIMATION AND MINIMUM MEAN RELATIVE ERROR

Rumana Tasleem1, Dr. M. Pavithra Jyothi2, Dr. Mohd Abdul Khader Khan3

1PG Scholar, Department of VLSI, Shadan Women’s College of Engineering and Technology, Hyderabad,

rumana3m@gmail.com
2Associate Professor, Department of ECE, Shadan Women’s College of Engineering and Technology,

3Professor & Head, Department of ECE, Shadan Women’s College of Engineering and Technology, Hyderabad,

ABSTRACT

In floating-point division, the ratio (1 + Mx)/(1 + My) is calculated, with Mx and My denoting the input

values' mantissas. In this work, we provide a novel approach to approximate this process with a My-dependent

linear function of Mx. In order to minimize the approximation's Mean Relative Error Distance (MRED), the

coefficients are computed. In order to do this, My's range is divided into N sub-intervals, and the minimization of

MRED is expressed as a linear programming problem with optimum coefficient values found in its solution. Two

multipliers, an adder, and a tiny lookup table are needed for the hardware implementation. Utilizing an aggressive

coefficients quantization, the design is further optimized. As N increases, obtained MRED improves, ranging from

1.4% to 0.33%. Results of implementation in a 28nm CMOS technology demonstrate that the suggested design

beats the current best, providing the optimal balance between accuracy and hardware complexity. Results show
excellent performance for two image processing applications: JPEG compression and change detection, with

PSNR values above 50dB and SSIM values extremely near to 1.

INTRODUCTION

The design of digital signal processing (DSP)

algorithms, which are widely used in everyday

electronic applications, depends heavily on

ARITMETIC circuits. The emergence of artificial

intelligence and huge data processing necessitates the

use of mathematical operations extensively for tasks

like machine learning, categorization, and recognition
[1]. The Internet of Things (IoT) paradigm has led to

the requirement for huge amounts of data to be

processed, stored, and sent. This has made the design

of electrical devices with low-power characteristics

difficult [2], [3].

The adoption of appropriate design solutions has

become a priority in order to fulfill goal activities with

acceptable power consumption since adders,

multipliers, and divisions are energy-consuming

circuits.

In this case, approximate computing (AC) is a useful
technique that can save space and power while

allowing for computation mistakes [4], [5].

Furthermore, the AC technique is very effective due to

the limitations of human senses and the error-tolerant

character of many real applications (e.g., image and

audio processing, adaptive filtering) [6, 7, 8].

Numerous studies have focused on the design of fixed-

point approximation multipliers and adders, offering

numerous methods that can maximize both area and

power. Papers [9], [10], and [11], for example, present

a decomposition technique that splits the adder into

atomic fast sub-adders, each of which processes a
fraction of the input signals. Meanwhiple, papers [12],

[13], and [14] make use of an approximation carry-skip

architecture capable of reducing the critical path delay.

The speculative approach is used to create parallel-

prefix adders in [15], while approximation full-adders

at the gate and transistor levels are shown in [16], [17].

Reducing the complexity of the partial product matrix

(PPM) compression step usually results in significant

power savings when multipliers are included. Once

more, several methods have been suggested, ranging

from truncation [23], [24] or input segmentation [25],

[26], [27], [28], [29], to approximate compression [18],

[19], [20], [21], and [22]. Appropriate correction

methods are also discussed for accuracy recovery (see
[20], [23], [26] for references).

In contrast to multipliers and adders, dividers have not

gotten as much attention in writing. Nonetheless,

hardware dividers are preferable over software

implementation of the division in the design of a

number of commercial microprocessors and devices

[30], [31], and [32].

Iterative methods based on subtractions and

multiplications are typically used in the division of two

fixed-point values to compute the quotient from an

initial estimate [33], [34], [35], [36], [37], [38].
Here, the design's main considerations are latency and

power use. Sweeney-Robertson-Tocher (SRT)

algorithms attempt to minimize the number of

repetitions by utilizing redundant quotient

representations and high-radix coding [38]. Additional

methods to boost power include estimating the

subtractor [39], using signal segmentation [40], or both

[41]. An other method for computing the quotient with

less energy and delay is to realize non-iterative

dividers. Since it enables the division to be expressed

as two-operand subtraction followed by a shift, the

logarithmic number system (LNS) is a useful tool in
this situation [42]. While [44] uses a linear

approximation for the expression 1/y, [43] recodes the

divisor y to only need a multiplication and a left-shift.

While [45] proposes LNS with mean-error correction,

[46] comes up with a rounding-based method to make

the divider simpler. Large dynamic range and excellent

precision are provided by floating-point arithmetic,

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 42

which represents integers with sign, exponent, and

mantissa [47]. The design of floating-point dividers is

crucial for several real-world DSP applications because

of these features.

Sign and exponent calculation in a hardware divider
can be easily implemented with just an XOR and a

subtraction. However, the mantissa calculation is far

more intricate and calls for a fixed-point division (1 +

Mx)/(1 + My), where Mx and My represent the

dividend and divisor mantissas, respectively. In [48], a

two-step approximation method using shift and add

operations is presented to do the mantissa division. In

this instance, the tradeoff between hardware

complexity and precision can be adjusted based on the

shift and addition counts that are specified during the

design phase.

A piecewise constant approximation is utilized in [49].
Similarly to [48], varying degrees of precision can be

attained by appropriately selecting the number of

ranges across which the constant approximation is

used. In [50], a variable correction term that is kept in

a LUT is used to regain accuracy after the mantissa

division is estimated using subtractions. Since it affects

both the accuracy and the size of the LUT, the

correction term's bit count in this instance is a crucial

design element. The division is reexamined in [51] as

a two-variable function, and the surface of the quotient

is estimated using best-fitting planes.
In this study, we suggest a novel minimal error, non-

iterative approximation floating-point divider, which

we will refer to as FPDME from here on. The precise

operation (1 + Mx)/(1 + My) is the first step in our

method, and we represent the division as a linear

function of the mantissa Mx, with coefficients based on

My.

The divider's accuracy is impacted by the coefficient

selection. Our method finds the coefficients with the

goal of minimizing the approximation's Mean Relative

Error Distance (MRED). In order to do this, the range

of My is divided into N sub-intervals, and the
minimization of MRED is framed as a linear

programming problem in each sub-interval, the

solution of which yields the ideal values for the

coefficients. Although we took MRED reduction into

consideration, it's important to remember that our

suggested strategy is easily adaptable to target other

error metrics, such mean absolute error, for example.

To further improve the design, Mantissa truncation and

coefficient quantization are also utilized. A lookup

table (LUT) is all that is needed for hardware in the

proposed division to store the coefficients. Two
multipliers and an adder are combined into a single

carry-save arithmetic structure. A proper selection of N

and parameter quantization enables the trade-off

between hardware complexity and accuracy to be

adjusted during the design process.

Achieving MRED similar to or better than previously

suggested approximation floating-point dividers is

made possible by the proposed FPDME. In terms of

power-delay product (PDP) and area-delay product

(ADP), synthesis findings in TSMC 28nm CMOS

technology also demonstrate an increase in hardware

performances above the state-of-the-art. We showcase

the outcomes of two image processing uses cases:

JPEG compression and change detection. The two
applications highlight the benefits of the suggested

method even further, demonstrating competitive results

in terms of mean structural similarity index (SSIM) and

peak signal-to-noise ratio (PSNR).

LITERATURE SURVEY

Internet of Things (IoT): An overview, design

components, and security concerns

The Internet of Things is a globally developing

technology that facilitates the internet-based

networking of sensors, automobiles, healthcare

facilities, businesses, and consumers. Smart Homes,
Smart Cities, Smart Agriculture, and Smart World are

all made possible by this kind of construction. The vast

number of devices, connection layer technologies, and

services that make up the Internet of Things make its

architecture very complicated. However, the most

crucial factor in IoT is security. With the aid of Smart

World, we provide an overview of the IoT architecture

in this article. In the second section of this article, we

address IoT security concerns and then IoT security

solutions. Ultimately, the difficulties covered in the

report may serve as avenues for future research in IoT
security.

An Estimated Down-sampling Technique for

Intelligent Systems with Power Limitations

Artificial intelligence algorithms are increasingly

being deployed on bespoke hardware supports in

current power-constrained applications, such as the

majority of Internet-of-things applications. It is

imperative to minimize power consumption in various

working situations, even if it means sacrificing

computational precision. In order to decrease the total

amount of convolution computations, we provide a
unique prediction technique in this study that identifies

possible dominating features in convolutional layers

and then down-samples those layers. Utilizing this

approximation down-sampling technique, a unique

hardware architecture for Convolutional Neural

Network (CNN) model inference has been designed.

After using the suggested method on a number of

benchmark CNN models, we were able to save up to

70% of energy overall while maintaining accuracy

levels below 3% when compared to baseline designs.

Experiments conducted show that the suggested
architecture implemented on a Xilinx Z-7045 device

and on an STM 28nm process technology dissipates

only 680 and 21.9 mJ/frame, respectively, when

adopted to infer the Visual Geometry Group-16

(VGG16) network model. In all scenarios, the

innovative design outperforms a number of cutting-

edge rivals in terms of the energy-accuracy drop

product.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 43

An emerging paradigm for energy-efficient

architecture is approximate computing.

Recently, approximate computing has gained

popularity as a viable method for designing digital

systems that use less energy. Many systems and
applications must be able to accept a certain amount of

quality or optimality loss in the calculated output in

order for approximate computing to work.

Approximate computing approaches provide much

higher energy economy by reducing the requirement

for fully exact or entirely predictable computations.

The design of approximation arithmetic blocks,

relevant error and quality measurements, and

algorithm-level approaches for approximate computing

are among the latest advancements in the field that are

reviewed in this work.

A New Low-Power Module-Signal Approach for the

DLMS Adaptive Filter Featuring Low Steady-State

Error

This work proposes a unique implementation of the

Delayed LMS (DLMS) filter that can preserve regime

performances while lowering power dissipation. The

method is based on the fact that when the circuit is near

the convergence point, the error signal has a tiny value

and oscillates around zero. Consequently, there is a lot

of switching activity in the feedback section's

multipliers due to the error signal's most significant bits
constantly flipping between positive and negative

values. This research suggests using a sign-modulus

representation of the error signal in order to

significantly lower the filter's feedback path switching

activity. Further approximation methods are also

developed to minimize power dissipation even more.

The suggested filter is the only one that can approach

the MSE of the precise implementation with a notable

reduction in power consumption, according to

comparisons with the state-of-the-art. We have

implemented a test-chip on TSMC 28nm CMOS

technology to confirm our methodology through
experimentation. According to the testing results,

depending on how the filter is exactly implemented,

power consumption may be reduced by up to 45.4%.

Precision-adjustable multiplier for approximative

mathematical structures

In application scenarios where rigorous constraints are

eased, approximation might improve performance or

lower power consumption using an erroneous or

simpler circuit. In applications pertaining to human

senses, approximation arithmetic can yield adequate
outcomes instead of than absolutely accurate results.

An approximate design makes use of a trade-off

between computational accuracy and power and

performance. However, the level of precision needed

varies depending on the application, and in certain

cases, 100% precise findings are still necessary. Our

research presents an accuracy-configurable

approximation (ACA) adder that allows the accuracy

of its outputs to be adjusted in real time. The ACA

adder may function adaptively in both approximate

(inaccurate) mode and accurate mode due to its

configurability. Compared to traditional adder designs,

the suggested adder can achieve a considerable

throughput gain and total power reduction. It may be
applied to applications that require accurate

configuration and enhances the feasible trade-off

between power/performance and quality.

PROPOSED METHODOLOGY

BLOCK DIAGRAM

Block diagram of the proposed FPDME

In this study, we suggest a novel minimal error, non-

iterative approximation floating-point divider, which

we will refer to as FPDME from here on. Starting with

the precise operation (1 + Mx)/(1 + My), we formulate

our method as a linear function of the mantissa Mx,

with coefficients that depend on My.

The divider's accuracy is impacted by the coefficient
selection. Our method finds the coefficients with the

goal of minimizing the approximation's Mean Relative

Error Distance (MRED).

MODULE EXPLANATION:

FLOATING-POINT DIVISION

The following is the representation of a real number A

in floating-point notation:

where bias is a constant term used to shift the exponent,

and S, E, and M are the sign, exponent, and mantissa

of A, respectively. The bit-width of E and M as well as

the bias value vary depending on the required accuracy,

with one bit being used for the sign. The single

precision IEEE-754 format is displayed in Fig. 1 [47].

32 bits are needed to represent A, with unsigned values

stated on 8 and 23 bits (highlighted in blue and green,
respectively) for E and M. While the mantissa M

fluctuates throughout the range [0, 1], the exponent E

is located within [0, 255]. Furthermore, bias is adjusted

to 127 to move (1)'s total exponent inside the interval

[−127, 128].

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 44

Although the following assumes single precision

floating-point values for the divider inputs, the

suggested method is universal and works as well with

other floating-point formats, such as IEEE half-

precision or BFloat16. Allow us to examine the two
operands in order to demonstrate the floating-point

division:

sign, exponent, and mantissa of the dividend, X, are

represented by Sx, Ex, and Mx, while sign, exponent,

and mantissa of the divisor, Y, are represented by Sy,

Ey, and My.

The symbol for the divide Z = X/Y is comparable:

where values in [0, 1] are assumed for the

normalization of the mantissa Mz. It's also important to

remember that the number (1 + Mz) falls between [1,

2). While the modulus of Z may be expressed as

follows, the sign Sz of the division is just the XOR of
the operands' sign bit.

Now let's look at the expression (1 + Mx)/(1 + My). Its

maximum value is (slightly) less than 2 when My and

Mx are extremely near to zero and one, respectively. In

the other scenario, a minimum value that is (slightly)

more than 0.5 is attained.

Consequently, the following disparity is true:

It's also important to remember that when Mx > My is

true, the factor (1 + Mx)/(1 + My) is greater than 1.

Next, the following two scenarios are taken into

consideration for the computation of Ez and Mz,

beginning with (4) and (5):

In fact, when Mx > My, the quotient (1 + Mx)/(1 + My)

naturally occurs in the range [1, 2] (see (6)). On the

other hand, when Mx < My, (1 + Mx)/(1 + My) is in

the interval [0.5, 1). As a result, the normalizing

method requires that you double (1 + Mx)/(1 + My) and

deduct a "1" from the exponent for compensation in

order to obtain (1 + Mz) in [1, 2], as seen in (7).
Regardless, in all scenarios, the division of (1 + Mx)/(1

+ My) is necessary for the mantissa computation.

PROPOSED FLOATING-POINT DIVIDER

We go over the method for approximating the division

in this section. First, we represent the division as a

linear function of the mantissa Mx, with coefficients

that are dependent on My, dividing (1 + Mx)/(1 + My).

Subsequently, we solve a minimization issue stated as

a linear constraint programming problem to acquire the

coefficient values that optimize the MRED. To further

improve the design, we aggressively quantize the
coefficients in a future phase. We recast the

optimization issue as an integer linear programming

problem in order to achieve this goal.

A. Approximation of Division as a Linear Function

of Mx

To demonstrate the suggested method, let us first

define the approximate ratio as φ(Mx, My) and the

precise one as f (Mx, My) = (1 + Mx)/(1 + My). The

difference between f (Mx, My) and φ(Mx, My) is the

relative error distance (RED).

The average value of RED is represented by the

MRED.

Additionally, let's rewrite the mantissa division as

follows:

f (Mx, My) is linear with respect to Mx and has

coefficients that depend on My, as shown in (9). This

discovery allows us to write f (Mx, My) as follows:

To get the error equal to zero, we need choose g(My) =

c(My) = 1/(1 + My)) from (9)–(10). However, to get

the end result, c(My) has to be multiplied by Mx. Thus,

it makes logical to employ two distinct approximations

for g(My) and c(My), with a harsher approximation for

c(My), from the standpoint of hardware

implementation.

We divide the range of My into N-subintervals, each

with a width of 1/N, keeping the aforementioned in

mind. As seen in Fig. 2, this translates to dividing the

mantissas' plane Mx − My into N horizontal stripes.
Keep in mind that we select N to be a power of two in

order to make it simple to identify each stripe using the

most significant bits (MSBs) of My, h = log2(N).

Whereas My < k/N in the k-th stripe (k − 1)/N While

g(My) is estimated using a linear function of My as

follows, c(My) is approximated using a constant:

c(My) = ck.

g(My) = ak + bk My.

With the aforementioned presumptions, the k-th stipe's

equation (10) becomes:

In order to estimate the quotient, this equation requires

a total of 3჻N coefficients, ak, bk, and ck. Therefore,

our task is to determine the coefficients that minimize

the MRED.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 45

B. The Acquisition of the Ideal Coefficients

In Fig. 2, we highlight the red dots that represent nx ×

ny evenly spaced locations, which we discretize to

acquire the values of the coefficients ak, bk, and ck.

This is where the relative error distance is calculated.
Next, the relative error distance REDi,j in a generic

point of coordinates (Mxi, Myj) is written as follows:

utilizing: j = 0, 1,... ny − 1 and i = 0, 1,... nx − 1. We

might formulate our issue as follows: In order to

minimize the following objective function,

determine the coefficients ak, bk, and ck in each stripe:

It is important to note that, with the exception of a

scaling factor, the summation in (13) corresponds to

the MRED in the k-th stripe. As a result, reducing (13)

in every stripe enables lowering the divider's overall

MRED. It is important to note that, in addition to

MRED, other error metrics, such as mean absolute

error, might also be regarded as cost functions in

equations (12) and (13).

By adding additional auxiliary variables uij, the
optimization issue (13) may be further phrased as a

linear programming problem so that:

Then, to make (13) more succinct, posing fij = f (Mxi,

Myj), it may be rewritten as follows:

where after some algebra, the restrictions are obtained

from (14). The issue (15) resembles a typical linear

programming problem, which looks like this:

When there are two restrictions and the unknown

vector x is made up of three + nx ・ ny components (ak,

bk, ck, and uij for i = 0, 1,... nx − 1 and j = 0, 1,... ny − 1).
The contour plot of RED is displayed in Figures 3a, 3b,

and 3c for N = 4, 8, and 16, respectively. MATLAB's

linprog function was used to solve the minimization

issue. We will assume nx = 100 and ny = 20 in the

following. Large areas of the mantissas' plane can have

low RED values when N is increased, as the blue parts

that grow from N = 4 to N = 16 illustrate. As a result,

raising the N value also enhances the MRED.

Furthermore, Fig. 3 advises appropriately selecting N

to satisfy the required accuracy limitations (depending,

for example, on the chosen floating-point format).

C. Coefficient Quantization

The coefficients ak, bk, and ck must have quantized

values in order to implement the mantissa division in

hardware. We rewrite ak, bk, and ck as follows in order

to achieve this:

where aint,k, bint,k, cint,k are integer variables that

need to be determined, and LSBa, LSBb, and LSBc are

the weights of the less-significant bits (LSB) of the

coefficients (specified at design time). It is noteworthy

that in order to achieve the desired precision, the
selection of LSBa, LSBb, and LSBc can be

appropriately adjusted based on the chosen floating-

point format. We acquire a mixed-integer linear

programming issue by replacing ak, bk, and ck in (15)

with a′k, b′k, and c′k. This may be addressed in

MATLAB by using the intlinprog tool, which returns

the values of quantized coefficients that minimize the

MRED.

The behavior of MRED with quantized coefficients is

seen in Figure 4. As N varies from 4 to 32, the MRED

in the picture is a function of LSBc, with LSBa set at

2−7 and LSBb equal to 2−1 or 2−3. Additionally, we
present the inaccuracy that results from using actual,

non-quantized coefficients (black dashed line). The

MRED is calculated in these simulations by taking into

account 106 divisions, which are carried out using 106

pairings of uniformly distributed integers stated on 23

bits. As can be seen in Fig. 4, in every case the MRED

shows an impressive dependency on LSBc. As

anticipated, a drop in LSBc values results in better

resolutions of coefficients c′k and an increase in

accuracy.

However, as Figs. 4c and 4d demonstrate, a decreased
dependency on LSBb is seen, especially for N ≥16.

In actuality, the MRED obtained in this instance for

LSBb = 2−3 is quite similar to that obtained for LSBb

= 2−1. A suitable selection of LSBa also results in

acceptable performances and is less demanding on the

design. In this instance, we discovered that LSBa = 2−7

makes sense to reach a respectable MRED for small

LSBc values. Finding LSBc as 2−3 for N = 4 and in the

range 2−4-2−7 for N ≥ 8 yields an acceptable

inaccuracy, according to the findings shown in Fig. 4.

Selecting LSBb = 2−1 is thus a sensible choice. We

concentrate on the following test scenarios in light of
these insights in an effort to obtain reasonable

hardware complexity and accurate results:

(i) N = 4; LSBa = 2−7, LSBb = 2−1, LSBc = 2−3

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 46

(ii) N = 8, LSBa = 2−7, LSBb = 2−1, LSBc = 2−4

(iii) N = 16, LSBa = 2−7, LSBb = 2−1, LSBc = 2−4

(iv) N = 32, LSBa = 2−7, LSBb = 2−1, LSBc = 2−5.

The values obtained for the coefficients aint,k, bint,k,

and cint,k in the four examples under consideration are
gathered in Tables I–IV.

TABLE I

TABLE II

TABLE III

TABLE IV

PROPOSED FLOATING-POINT DIVIDER

Fig. 5a shows the hardware implementation of the

suggested FPDME. While the exponent Ez is

calculated using a multi-operand adder, the sign Sz is

obtained by XORing Sx and Sy. The ApprxDiv block

is where the approximation mantissa division is carried

out. The quantization coefficients are stored in the h

MSBs of the My Index Lookup Table (LUT), and the

quotient is calculated by two multipliers and an adder.
Since bint,k is always negative, we save its absolute

value |bint,k| in the LUT to reduce the size of the LUT.

Nevertheless, as Tables I–IV demonstrate, the LUTs

are quite tiny and don't require special ROM. They

were synthesized with a standard-cell library in mind

and specified in Verilog HDL.

By multiplying cint,k and bint,k with the mantissas and

adding aint,k to the products, one may estimate the

quotient φk. The signals Mxnt and Mynt are obtained

by truncating the nt LSBs of mantissas in order to

simplify multipliers. We emphasize that nt can be
carefully selected depending on the necessary accuracy

and the floating-point format being utilized.

To further optimize hardware, the multipliers and adder

are arranged in a fused carry-save arithmetic structure

(referred to as CSAS in the picture).

The CSAS in the example N = 8, LSBa = 2−7, LSBb =

2−1, LSBc = 2−4, and nt = 16 is depicted in detail in

the figure. In this case, Mxnt and Mynt are stated on 23

− nt = 7 bits, whereas aint,k, |bint,k|, and cint,k are

expressed on 8, 2, and 4 bits, respectively. Then, Mxnt

・ cint,k is responsible for the first four blue rows,

whereas Mynt ・ |bint,k| is responsible for the

remaining two orange rows. The word "aint,k" is

shown in green. Furthermore, the products Mxnt ・

cint,k and Mynt ・ bint,k contain LSBs of weight 2−11

and 2−8, respectively, with Mxnt, Mynt having an LSB

of weight 2−(23−nt) = 2−7.

It's also important to note that the CSAS computes the
quotient's 12 bits rather than its full 24 bits, which
enables the normalization process's hardware
complexity to be reduced (explained in the

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 47

following). In general, the number of bits calculated
by CSAS is nφ = 24 − nt + |log2(LSBc)|.
In order to retrieve the mantissa Mz, the
Normalization block in Fig. finally rearranges φk in
the interval [1, 2). As previously mentioned, the
quotient fluctuates in [0.5, 2), and as a result, its MSB
(shown in the picture as φk[nφ−1]) has a weight of
20. The normalizing process adds a zero at the least
significant position to twice the quotient if
φk[nφ−1] = 0, which places φk in the range [0.5, 1]
(see the signal φ1 in the normalizing process).
Additionally, ∼φk[nφ−1] is deducted to the
exponent in order to account for compensation,
where "∼" signifies the inversion operator.

On the other hand, no additional operation is needed
if φk[nφ − 1] = 1. This indicates that φk is already in
[1, 2). In this instance, Mz is represented by the
fractional component of φk (refer to the signal φ2 in
the picture).
A multiplexer in Fig. 5's design chooses between φ1

and φ2, and the least significant position of zeros is

added to describe the outcome on 23 bits.

ASSESSMENT OF PERFORMANCES

A. Measures of Error

Let Q and Qapprx stand for the exact and approximate

quotients, respectively. As demonstrated in Section II,

the approximation error is defined as E = Q − Qapprx,

and the relative error distance and mean relative error

distance are denoted as RED = |E/Q| and MRED =

avg(RED), respectively. The average operator is

represented by avg(・). Additionally, we calculate the

likelihood of having RED greater than 2% (referred to

as PRED below) and the Error Bias, which is defined

as EB = avg(E/Q) [49].

In order to calculate the error metrics, 106 divisions are

made using 106 pairs of randomly distributed, single-
precision floating-point values. For the purpose of

accomplishing the mantissas division, we will examine

examples (i), (ii), (iii), and (iv) in the following. The

related floating-point dividers are designated

FPDME4(7, 1, 3), FPDME8(7, 1, 4), FPDME16(7, 1,

4), and FPDME32(7, 1, 5), respectively. For reference,

we also give the scenario without truncation and

change the number of discarded LSBs nt.

The performances of dividers [42], [44], [48], [49], and

[50] are also included for comparison's purposes. The

divider [42], which we will refer to as ALD from here

on, processes just the first q MSB of Mx and My (q =
8 in our experiments) and subtracts mantissas in the

LNS form. The work [49] uses 2d values, where d is

either 2 or 3, to approach 1/(1 + My) and takes

advantage of a truncated multiplier with t preserved

columns. The divider [49] will be shown as LPCAD(d,

t) in the following, where t = 4, 8. The mantissas' plane

is divided into 2P × 2P square areas by the work [50],

which will be referred to as CADE henceforth. For

each section, an error compensation term represented

in L bits is computed. We consider L = 8 and P = 3, 4

for our investigation. The design [44], known as

TruncApp, uses just r bits to compute the quotient—r

= 4 in our trials—and utilizes linear approximation for
the term 1/(1 + My). Lastly, the work [48] uses two

alternative shift-and-add operations (with α setting the

approximation level) to realize the division.

Additionally, β adders are used in each operation, and

their addends are shortened on 5 bits. We refer to [48]

as FPAD LαAβ in the following. The error metrics for

the state-of-the-art and the suggested divider are

gathered in Table V, where MRED and EB are given

as percentage values. The performance of the

architecture suggested in this work varies, as predicted,

depending on the number of partitions N. For N = 32,

the MRED increases from 1.5% to 0.33%. In addition,
PRED shows a noticeable dependence, going from 2.4

× 10−1 to 3.2 × 10−4, while EB findings are nearly

constant. Furthermore, nt influences the divider's

accuracy; a low number of truncated LSBs results in

the best approximation.

Concerning the other implementations, only

LPCAD(2, 8), LPCAD(3, 8), and CADE can provide

error metrics that are equivalent to the suggested

FPDME; CADE, for example, can achieve an MRED

of 0.65% with P = 4 and L = 8. The accuracy of the

other divisions is lower, with MRED being 2% or
more. The worst results are displayed in this instance

by ALD and TruncApp, with MRED of around 4% and

PRED of almost 7 × 10−1.

B. Hardware Performances

Using a physical flow in Cadence Genus, we

synthesized the circuits in TSMC 28nm CMOS

technology and detailed the suggested and cutting-edge

dividers in Verilog HDL.

We have implemented FPDME4(7, 1, 3) for the

proposed FPDME architecture using nt = 15 or nt = 17,

whereas nt = 16 has been used for the implementation
of FPDME8(7, 1, 4), FPDME16(7, 1, 4), and

FPDME32(7, 1, 5). As previously indicated, the LUTs

are built using the library's standard cells during the

synthesis process and are defined using procedural

blocks.

In the initial trial, we set a relatively lax maximum

delay (10ns) on the circuits to enable the synthesizer to

create least area and minimum power versions of the

dividers. In this instance, we additionally generated the

precise floating-point division using the synthesizer's

ChipAware module.
To study the performance when a higher operating

frequency is needed, we conducted a second

experiment with a tighter maximum delay limitation

(750 ps). Since meeting the timing limit would be

impossible given the circuit's complexity, we have

decided not to include the precise divider in this second

experiment.

The generated netlists with 105 random inputs are

simulated in both trials to determine the power

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 48

consumption. Path delays are documented in standard

delay format (SDF) files, while switching activity is

annotated in toggle count format (TCF) files.

The first experiment's results are included in Table VI.

The power-delay product (PDP) and the area-delay
product (ADP) are presented in the final two columns.

Regarding the precise divider, the PDP is significantly

decreased by all of the examined designs. ALD and

TruncApp display the best results, with PDP in the

range of 3fJ. On the other hand, these architectures also

have the biggest inaccuracy.

The suggested design demonstrates a reasonable

balance between PDP and error. With the exception of

CADE P = 4 L = 8, LPCAD(2, 8) and LPCAD(3, 8)

alone, FPDME4(7, 1, 3) nt = 17 displays a lower PDP

and error in comparison to all versions of LPCAD,

CADE, and FPAD.
For the ADP, a similar tendency is also seen. Similarly,

the findings of the second experiment are gathered in

Table VII. As demonstrated, our dividers provide PDP

and ADP that are on par with LPCAD, CADE P = 3, L

= 8, and FPAD; FPDME4(7, 1, 3) nt = 17 yields the

greatest results. Hardware complexity is best displayed

by ALD and TruncApp, whereas PDP and ADP are

poorer in CADE P = 4, L = 8.

To facilitate a combined evaluation of the electrical and

accuracy performances, Fig. 6 shows the PDP and the

ADP for each experiment in relation to the MRED. The
Pareto front is defined in this case by implementations

that are closer to the bottom-left corner and have low

PDP/ADP with good precision.

The suggested dividers, as indicated by the black

dashed line in Fig. 6a, are all on the Pareto front and

provide the optimal trade-off between PDP and

MRED. The only implementations that behave poorly

are ALD and TruncApp, with only LPCAD(3, 8) being

near to the ideal curve. All other implementations, on

the other hand, have a significant MRED. In order to

find the optimal trade-off between ADP and MRED,

the suggested FPDME are also on the pareto front.
Once more, LPCAD(3, 8) yields competitive results for

low accuracy, along with ALD and TruncApp.

SIMULATION RESULTS:

CONCLUSION

We have presented a new non-iterative linear

approximation-based approximate floating-point

divider in this work. The quotient (1 + Mx)/(1 + My)

has been roughly represented in our divider as a linear

function of Mx with coefficients reliant on My. In order

to minimize the approximation's Mean Relative Error

Distance (MRED), the coefficients have been
computed. In order to do this, the range of My has been

divided into N sub-intervals, and the minimization of

MRED has been presented as a linear programming

problem in each subinterval, the solution to which

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 49

yields the ideal values for the coefficients. To further

improve the design, Mantissa truncation and

coefficient quantization have also been utilized.

A detailed description of the whole floating-point

divider's hardware structure has been provided, and the
suggested architecture's performance has been

contrasted with that of earlier approximations of

dividers. Based on a wide variety of mean relative error

distance values, our study demonstrates that the

suggested design outperforms the state of the art and

provides the optimal trade-off between PDP/ADP and

accuracy. Additionally, we have data for two image

processing applications that demonstrate the benefits of

the suggested method with competitive results in terms

of Mean Structural Similarity Index (SSIM) and peak

signal to noise ratio (PSNR).

REFERENCES

[1] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J.

Han, “Approximate arithmetic circuits: A survey,

characterization, and recent applications,” Proc. IEEE,

vol. 108, no. 12, pp. 2108–2135, Dec. 2020, doi:

10.1109/JPROC.2020.3006451.

[2] J. Gubbi, R. Buyya, S. Marusic, and M.

Palaniswami, “Internet of Things (IoT): A vision,

architectural elements, and future directions,” Future

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660,

Sep. 2013, doi: 10.1016/j.future.2013.01.010.
[3] F. Spagnolo, S. Perri, and P. Corsonello,

“Approximate down-sampling strategy for power-

constrained intelligent systems,” IEEE Access, vol. 10,

pp. 7073–7081, 2022, doi:

10.1109/ACCESS.2022.3142292.

[4] J. Han and M. Orshansky, “Approximate

computing: An emerging paradigm for energy-efficient

design,” in Proc. 18th IEEE Eur. Test Symp. (ETS),

Avignon, France, May 2013, pp. 1–6, doi:

10.1109/ETS.2013.6569370.

[5] V. K. Chippa, S. T. Chakradhar, K. Roy, and A.

Raghunathan, “Analysis and characterization of
inherent application resilience for approximate

computing,” in Proc. 50th ACM/EDAC/IEEE Design

Autom. Conf. (DAC), Austin, TX, USA, May 2013,

pp. 1–9, doi:

10.1145/2463209.2488873.

[6] R. J. Radke, S. Andra, O. Al-Kofahi, and B.

Roysam, “Image change detection algorithms: A

systematic survey,” IEEE Trans. Image Process., vol.

14, no. 3, pp. 294–307, Mar. 2005, doi:

10.1109/TIP.2004.838698.

[7] D. Esposito, G. Di Meo, D. De Caro, A. G. M.
Strollo, and E. Napoli, “Quality-scalable approximate

LMS filter,” in Proc. 25th IEEE Int. Conf. Electron.,

Circuits Syst. (ICECS), Bordeaux, France, Dec. 2018,

pp. 849–852, doi: 10.1109/ICECS.2018.8617858.

[8] G. Di Meo, D. De Caro, G. Saggese, E. Napoli, N.

Petra, and A. G. M. Strollo, “A novel module-sign low-

power implementation for the DLMS adaptive filter

with low steady-state error,” IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 69, no. 1, pp. 297–308, Jan. 2022,

doi: 10.1109/TCSI.2021.3088913.

[9] D. Mohapatra, V. K. Chippa, A. Raghunathan, and

K. Roy, “Design of voltage-scalable meta-functions for

approximate computing,” in Proc. Design, Automat.
Test Europe, Grenoble, France, 2011, pp. 1–6, doi:

10.1109/DATE.2011.5763154.

[10] A. B. Kahng and S. Kang, “Accuracy-

configurable adder for approximate arithmetic

designs,” in Proc. Design Autom. Conf., San

Francisco, CA, USA, Jun. 2012, pp. 820–825, doi:

10.1145/2228360.2228509.

[11] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel,

“A low latency generic accuracy configurable adder,”

in Proc. 52nd ACM/EDAC/IEEE Design Autom. Conf.

(DAC), San Francisco, CA, USA, Jun. 2015, pp. 1–6,

doi: 10.1145/2744769.2744778.
[12] K. Du, P. Varman, and K. Mohanram, “High

performance reliable variable latency carry select

addition,” in Proc. Design, Autom. Test Eur. Conf.

Exhib. (DATE), Dresden, Germany, Mar. 2012, pp.

1257–1262, doi: 10.1109/DATE.2012.6176685.

[13] Y. Kim, Y. Zhang, and P. Li, “An energy efficient

approximate adder with carry skip for error resilient

neuromorphic VLSI systems,” in Proc. IEEE/ACM Int.

Conf. Comput.-Aided Design (ICCAD), San Jose, CA,

USA, Nov. 2013, pp. 130–137, doi:

10.1109/ICCAD.2013.6691108.
[14] L. Li and H. Zhou, “On error modeling and

analysis of approximate adders,” in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Design (ICCAD), San Jose,

CA, USA, Nov. 2014, pp. 511–518, doi:

10.1109/ICCAD.2014.7001399.

[15] D. Esposito, D. De Caro, and A. G. M. Strollo,

“Variable latency speculative parallel prefix adders

for unsigned and signed operands,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 63, no. 8, pp. 1200–

1209, Aug. 2016, doi: 10.1109/TCSI.2016.2564699.

[16] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and

C. Lucas, “Bio-inspired imprecise computational
blocks for efficient VLSI implementation of soft-

computing applications,” IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 57, no. 4, pp. 850–862, Apr. 2010,

doi:

10.1109/TCSI.2009.2027626.

[17] Z. Yang, A. Jain, J. Liang, J. Han, and F.

Lombardi, “Approximate XOR/XNOR-based adders

for inexact computing,” in Proc. 13th IEEE Int. Conf.

Nanotechnol., Beijing, China, Aug. 2013, pp. 690–

693, doi: 10.1109/NANO.2013.6720793.

[18] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra,
and G. D. Meo, “Comparison and extension of

approximate 4–2 compressors for low-power

approximate multipliers,” IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 67, no. 9, pp. 3021–3034, Sep. 2020,

doi: 10.1109/TCSI.2020.2988353.

[19] Z. Yang, J. Han, and F. Lombardi, “Approximate

compressors for error-resilient multiplier design,” in

Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 50

Nanotechnol. Syst. (DFTS), Amherst, MA, USA, Oct.

2015, pp. 183–186, doi: 10.1109/DFT.2015.7315159.

[20] M. Ha and S. Lee, “Multipliers with approximate

4–2 compressors and error recovery modules,” IEEE

Embedded Syst. Lett., vol. 10, no. 1, pp. 6–9, Mar.
2018, doi: 10.1109/LES.2017.2746084.

[21] O. Akbari, M. Kamal, A. Afzali-Kusha, and M.

Pedram, “Dualquality 4:2 compressors for utilizing in

dynamic accuracy configurable multipliers,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,

no. 4, pp. 1352–1361, Apr. 2017, doi:

10.1109/TVLSI.2016.2643003.

[22] F. Sabetzadeh, M. H. Moaiyeri, and M.

Ahmadinejad, “A majority based imprecise multiplier

for ultra-efficient approximate image multiplication,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no.

11, pp. 4200–4208, Nov. 2019, doi:
10.1109/TCSI.2019. 2918241.

[23] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and

A. G. M. Strollo, “Truncated binary multipliers with

variable correction and minimum mean square error,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no.

6, pp. 1312–1325, Jun. 2010, doi:

10.1109/TCSI.2009.2033536.

[24] J. M. Jou, S. R. Kuang, and R. Der Chen,

“Design of low-error fixed-width multipliers for DSP

applications,” IEEE Trans. Circuits Syst. II, Analog

Digit. Signal Process., vol. 46, no. 6, pp. 836–842,
Jun. 1999, doi: 10.1109/82.769795.

[25] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu,

T. Park, and N. S. Kim, “Energy-efficient approximate

multiplication for digital signal processing and

classification applications,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–

1184, Jun. 2015, doi: 10.1109/TVLSI.2014.2333366.

[26] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra,

G. Saggese, and G. Di Meo, “Approximate multipliers

using static segmentation: Error analysis and

improvements,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 69, no. 6, pp. 2449–2462, Jun. 2022, doi:
10.1109/TCSI.2022.3152921.

[27] G. Di Meo, G. Saggese, A. G. M. Strollo, and D.

De Caro, “Design of generalized enhanced static

segment multiplier with minimum mean square error

for uniform and nonuniform input distributions,”

Electronics, vol. 12, p. 446, Jan. 2023, doi:

10.3390/electronics12020446.

[28] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A

dynamic range unbiased multiplier for approximate

applications,” in Proc. IEEE/ACM Int. Conf. Comput.-

Aided Design (ICCAD), Austin, TX, USA, Nov. 2015,
pp. 418–425, doi: 10.1109/ICCAD.2015.7372600.

[29] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M.

Pedram, “TOSAM: An energy-efficient truncation-

and rounding-based scalable approximate multiplier,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 27, no. 5, pp. 1161–1173, May 2019, doi:

10.1109/TVLSI.2018.2890712.

[30] N. Burgess and C. N. Hinds, “Design of the ARM

VFP11 divide and square root synthesisable

macrocell,” in Proc. 18th IEEE Symp. Comput.

Arithmetic (ARITH), Jun. 2007, pp. 87–96.

[31] G. Gerwig, H. Wetter, E. M. Schwarz, and J.

Haess, “High performance floating-point unit with 116

bit wide divider,” in Proc. 16th IEEE Symp. Comput.
Arithmetic, Mar. 2003, pp. 87–94.

[32] S. F. Oberman, “Floating point division and

square root algorithms and implementation in the

AMD-K7T M microprocessor,” in Proc. 14th IEEE

Symp. Comput. Arithmetic, Apr. 1999, pp. 106–115.

[33] D. W. Sweeney, “Divider device for skipping a

string of zeros or radix minus-one digits,” U.S. Patent

3 145 296, Aug. 18, 1964.

[34] J. E. Robertson, “A new class of digital division

methods,” IRE Trans. Electron. Comput., vol. EC-7,

no. 3, pp. 218–222, Sep. 1958, doi:

10.1109/TEC.1958.5222579.
[35] K. D. Tocher, “Techniques of multiplication and

division for automatic binary computers,” Quart. J.

Mech. Appl. Math., vol. 11, no. 3, pp. 364–384, 1958,

doi: 10.1093/qjmam/11.3.364.

[36] M. J. Flynn, “On division by functional iteration,”

IEEE Trans. Comput., vol. C-19, no. 8, pp. 702–706,

Aug. 1970, doi: 10.1109/TC. 1970.223019.

[37] R. E. Goldschmidt, “Applications of division by

convergence,” Ph.D. dissertation, Massachusetts Inst.

Technol., Cambridge, MA, USA, 1964.

[38] J. Ebergen and N. Jamadagni, “Radix-2 division
algorithms with an over-redundant digit set,” IEEE

Trans. Comput., vol. 64, no. 9, pp. 2652–2663, Sep.

2015, doi: 10.1109/TC.2014.2366738.

[39] L. Chen, J. Han, W. Liu, and F. Lombardi,

“Design of approximate unsigned integer non-restoring

divider for inexact computing,” in Proc. 25th Great

Lakes Symp. VLSI, May 2015, pp. 51–56.

[40] L. Chen, J. Han, W. Liu, and F. Lombardi, “On the

design of approximate restoring dividers for error-

tolerant applications,” IEEE Trans. Comput., vol. 65,

no. 8, pp. 2522–2533, Aug. 2016, doi:

10.1109/TC.2015.2494005.
[41] S. Hashemi, R. I. Bahar, and S. Reda, “A low-

power dynamic divider for approximate applications,”

in Proc. 53rd ACM/EDAC/IEEE Design Autom. Conf.

(DAC), Austin, TX, USA, Jun. 2016, pp. 1–6, doi:

10.1145/2897937.2897965.

[42] J. N. Mitchell, “Computer multiplication and

division using binary logarithms,” IRE Trans. Electron.

Comput., vol. EC-11, no. 4, pp. 512–517, Aug. 1962,

doi: 10.1109/TEC.1962.5219391.

[43] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-

Kusha, S. Safari, and M. Pedram, “SEERAD: A high
speed yet energy-efficient rounding based approximate

divider,” in Proc. Design, Autom. Test Eur. Conf.

Exhib. (DATE), Dresden, Germany, Mar. 2016, pp.

1481–1484.

[44] S. Vahdat, M. Kamal, A. Afzali-Kusha, M.

Pedram, and Z. Navabi, “TruncApp: A truncation-

based approximate divider for energy efficient DSP

applications,” in Proc. Design, Autom. Test Eur. Conf.

http://www.ijesat.com/

International Journal of Engineering Science and Advanced Technology (IJESAT)

Vol 24 Issue 09, SEP, 2024

ISSN No: 2250-3676 www.ijesat.com Page | 51

Exhib., Lausanne, Switzerland, Mar. 2017, pp. 1635–

1638, doi:

10.23919/DATE.2017.7927254.

[45] H. Saadat, H. Javaid, and S. Parameswaran,

“Approximate integer and floating-point dividers with
near-zero error bias,” in Proc. 56th ACM/IEEE Design

Autom. Conf. (DAC), Las Vegas, NV, USA, Jun. 2019,

pp. 1–6.

[46] M. Vaeztourshizi, M. Kamal, A. Afzali-Kusha,

and M. Pedram, “An energy-efficient, yet highly-

accurate, approximate non-iterative divider,” in Proc.

Int. Symp. Low Power Electron. Design, New York,

NY, USA, Jul. 2018, pp. 1–6, doi:

10.1145/3218603.3218650.

[47] IEEE Standard for Floating-Point Arithmetic,

IEEE Standard 754-2019, Jul. 2019, doi:

10.1109/IEEESTD.2019.8766229.
[48] C. K. Jha, K. Prasad, V. K. Srivastava, and J.

Mekie, “FPAD: A multistage approximation

methodology for designing floating point approximate

dividers,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), Seville, Spain, Oct. 2020, pp. 1–5, doi:

10.1109/ISCAS45731.2020.9180768.

[49] Y. Wu et al., “An energy-efficient approximate

divider based on logarithmic conversion and piecewise

constant approximation,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 69, no. 7, pp. 2655–2668, Jul. 2022,

doi: 10.1109/TCSI.2022.3167894.

[50] M. Imani, R. Garcia, A. Huang, and T. Rosing,

“CADE: Configurable approximate divider for energy

efficiency,” in Proc. Design, Autom. Test Eur. Conf.

Exhib. (DATE), Florence, Italy, Mar. 2019, pp. 586–

589, doi: 10.23919/DATE.2019.8715112.

[51] L. Wu and C. C. Jong, “A curve fitting approach

for non-iterative divider design with accuracy and

performance trade-off,” in Proc. IEEE 13th Int. New

Circuits Syst. Conf. (NEWCAS), Grenoble, France,

Jun. 2015, pp. 1–4, doi:
10.1109/NEWCAS.2015.7182097.

[52] The USC-SIPI Image Database. [Online].

Available: https://sipi.usc.edu/database/

http://www.ijesat.com/
https://sipi.usc/

